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It is shown that for a thin airfoil with small camber and small angle of attack moving 
in a periodic gust pattern, the unsteady lift caused by the gust can be constructed 
by linear superposition to the Sears lift of three independent components accounting 
separately for the effects of airfoil thickness, airfoil camber and non-zero angle of 
attack to the mean flow. This is true in spite of the nonlinear dependence of the 
unsteady flow on the mean potential flow of the airfoil. Specific lift formulas are 
derived and analysed to assess the importance of mean flow angle of attack and airfoil 
camber on the gust response. 

1. Introduction 
Interest in the aerodynamics of airfoils in nonuniform motion or subject to 

unsteady flow began in the 1920s as engineers undertook the task of solving the 
aeroelasticity problems arising from higher flight speed. The early work dealt with 
thin flat-plate airfoils of infinite span in incompressible flows a t  zero mean incidence. 
By considering only small disturbances to the steady flow, i t  was possible to linearize 
the flow about a uniform parallel mean flow and thus to uncouple the time-dependent 
component of the flow completely from the steady-state aerodynamics. The basic 
tools used to analyse the unsteady flow then were conformal mapping and circulation 
theory. 

Essentially, the mathematical problem reduces to that of finding an irrotational 
and solenoidal flow field satisfying certain boundary conditions a t  the airfoil surface, 
Kelvin's theorem of conservation of the total circulation in the flow and the Kutta 
condition a t  the airfoil trailing edge. Thus the circulation around the airfoil changes 
in response to every change in the motion of the airfoil as well as to every unsteadiness 
in the flow. For every change in circulation, a vortex must be shed a t  the trailing 
edge of the airfoil and is then carried away by the mean flow. Therefore the vortices 
shed in the wake represent a recorded history of the airfoil nonuniform motion. Since 
every vortex induces a velocity field whose magnitude a t  a point is proportional to 
the vortex circulation and inversely proportional to the distance from the vortex, 
the fluid arts as if it  had a memory (a fading one to be sure) and the total velocity 
field then depends on the entire history of the airfoil motion. 

An unsteady airfoil theory evolved from these simple physical concepts, and its 
early developers included Prandtl, Birnbaum, Wagner, Kiissner and Glauert. The 
exact and complete analysis of a flat plate in sinusoidally oscillatory motion was given 
by Theodorsen (1935). A unified treatment of unsteady airfoil theory using the basic 
concepts of circulation theory was presented by von Karman & Sears (1938). The 
theory was simple and recovered the results of Theodorsen and certain rcwdts 
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predicted by Kiissner (1936). This new theory paved the way, a few years later, for 
Sears (1941) to derive his well-known expression for the lift function for a rigid airfoil 
passing through a vortical sinusoidal gust pattern. This expression, known as the 
Sears function, has since been extensively used in many investigations of aircraft 
flying through turbulence and of noise generation in fans. 

After this early development, the focus of interest in unsteady airfoil theory became 
compressibility effects and, later, cascade effects. The problem of a lifting airfoil 
passing through a gust pattern was only recently examined by Horlock (1968). Using 
a heuristic approach, Horlock partially accounted for the second-order effects of small 
mean-flow incidence on the fluctuating lift. A similar approach was used by Naumann 
& Yeh (1972) to account for small airfoil camber. These treatments, however, wcre 
incomplete in that they only accounted for the modified boundary condition at  the 
airfoil surface while neglecting the coupling betwecn the unsteady flow and the 
potential mean flow round the airfoil. 

A complete theory that accounts for the dependence of the unsteady flow on the 
mean potential flow of the airfoil was developed in Goldstein & Atassi (1976, 
hereinafter referred to as I). The theory analyses the interaction between a periodic 
two-dimensional gust with an airfoil in uniform motion and shows that the oncoming 
gust is distorted by the steady potential flow field about the airfoil. This distortion 
acts to cause significant variation in both the amplitude and phase of the unsteady 
velocity field associated with the gust. As a result, the relatively simple concepts of 
circulation theory so successfully used for uncoupled unsteady flows no longer 
completely describe the distorted velocity field of the gust. In  order to obtain a 
relatively simple closed-form solution, the analysis in 1 was restricted to the case of 
a thin airfoil with small angle of attack and camber and then a general formula was 
derived for the unsteady lift caused by the gust. 

One objective of the present paper is to show that for a thin airfoil with small 
camber, placed at small angle of attack to a mean potential flow and subject to a 
periodic gust pattern, the unsteady lift caused by the gust can be constructed by linear 
superposition to  the Sears lift of three independent components accounting separately 
for the effects of airfoil thickness, airfoil (*amber and non-zero angle of attack of the 
mean flow. This important rcsult is true in spite of the nonlinear dependencc of the 
unsteady flow on the mean potential flow about the airfoil. It primarily results from 
the linearization of the mean potential flow, but it is also a consequence of the 
resulting local dependence of the outer solution on the linearized mean flow. The linear 
dependence of the unsteady lift on the airfoil geometry and on the mean-flow angle 
of attack brings about a considerable simplification of the derivation of its explicit 
mathematical expression as well as of its practical application. 

The other objective of the present paper is to derive specific lift formulas and to 
assess the importance of mean-flow angle of attack and airfoil camber on the gust 
response by analysing the results and comparing them with those of other theories. 

2. Airfoil in a periodic gust 
Consider a two-dimensional airfoil with chord length c placed a t  non-zero incidence 

in a uniform mean flow l J  in the z1 direction (figure 1). Far upstream, a periodic gust 
of amplitude eU, where e << 1 ,  is imposed on the flow. The flow is assumed to  be 
two-dimensional, incompressible and inviscid. All lengths will be normalized with 
respect to $c, and all velocities with respect to I / .  The time will be non-dimtmsionalizcd 



The #ears problem for a lifting airfoil revisited 111 
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X1 

FIGURE 1. Airfoil in a gust with parallel and vertical components. 

with respect to c / 2 1 T .  The total velocity field can then be linearized about the mean 
flow : 

where the mean flow v is potential. Since the problem is linear, we can consider, 
without loss of generality, a single harmonic component of the upstream gust. Thus 
for a flat-plate airfoil a t  zero angle of attack, the expression for the gust velocity far 
upstream is 

v = v(x )  + €U( x, t ) + . . . , (2.1) 

exp{i(k.x-k,t)} as X ~ + - O O .  

The gust propagates in the direction 

k = k, i+k, j ,  (2.3) 

where i and j are the unit vectors in the x1 and x2 directions respectively, k ,  is the 
usual reduced frequency, and i = 1/ - 1. We also define k = kl+ik,. 

For an arbitrary airfoil a t  non-zero angle of attack to the mean flow, the unsteady 
velocity u is strongly coupled to the potential velocity v .  However, the general 
expression for the vorticity 

where u = u, i + u2 j .  can be readily derived in terms of v and the steady flow potential 
function @ and stream function Y (I, equation 2.14) : 

Q = i/klexp{i{k,[ --a! (j$-l)d@+@-@,--t 1 +k,(Y-E, , ) }} ,  (2.5) 

where Q0 is a constant determined by the condition that far upstream @ - @, - x,, and 
E', is a constant which determines the gust phase at  a reference point. Therefore, far 
uustream 
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Equation (2.5) shows how the nonlinear dependence of the unsteady flow on the 
mean potential flow of the airfoil distorts the vorticity field of the oncoming gust. 
Furthermore, far upstream, for a two-dimensional lifting airfoil Y - x 2  - In 1x1, and 
therefore (2.6) will not reduce precisely to (2.2). However, a two-dimensional airfoil 
is an approximation for an airfoil with large aspect ratio. Thus for a real airfoil this 
expansion for Y is only valid for a region upstream a t  a distance large compared to 
the airfoil chord but small compared to its span. As the distance upstream becomes 
large compared to the airfoil span, !P - x2 + constant, and (2.6) reduces precisely 
to (2.2). 

As a result the physically simple concepts of circulation theory cannot give a 
complete treatment for the general problem of an airfoil moving through a gust. I n  
order to account for the nonlinear dependence of the unsteady flow on the mean 
potential flow of the airfoil, a systematic mathematical analysis was carried out in 
1. The analysis, however, was restricted to the case of a thin airfoil with small angle 
of attack and camber so that a relatively simple closed-form solution could be 
obtained. The essential features of the theory dcveloped in I are outlined below. 

Let a denote a small parameter characteristic of the steady-flow disturbance caused 
by the airfoil. The associated velocity field can then be written as 

u(x)  = i+au( l ) (x )+  .... (2.7) 

(2 .8 )  

(2.9) 

This suggests tthat the unsteady flow u can also be expanded as 

u = exp ( - ik, t )  [u(O)(x) + au(')(x) + . . .], 

@ = exp ( - ik, t )  [$(O)(x) + a@(I)(x) + . . . I .  
with a similar expansion for the stream function II. associated with u :  

The Sears solution corresponds to do) .  The equation for is 

-ik,+- v2$(1) = -lkl (k.v(l))eik '~.  (2.10) ( 2)  
However, for a lifting airfoil, because of the inhomogeneous term in (2.10), 

(2.11) 

behaves as exp (ik-x) In 1x1 as 1x1 --f CO. Therefore the expansions (2.8) and (2.9) are 
not uniformly valid a t  infinity and should be considered only as inner expansions. 
The inner expansion u(l) must match a t  sonie intermediate region with an outer 
expansion which can be deduced from (2.5) and (2.6). The mathematical derivation 
of u(') is quite complex and the details are given in I .  

3. The lift formula 
A general formula for the net fluctuat,ing lift per unit span, L', acting on an airfoil 

moving in a gust pattern (2.6) wits derived in I ; it is 

11' = L:, + aL;, 
where 

(3.1) 

( 3 . 2 )  
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is the fluctuating lift derived by Sears for a flat plate a t  zero-incidence, and where 

is the complex conjugate of the Sears function. Here 

H+(k, )  = Hp)(kl)+iHp)(kl), (3.4) 

H p )  and HI' )  being Hankel functions of the first kind, of orders 0 and 1 respectively. 
The expression (I, 4.8) for L; depends on the velocities u and u. But for a 

zero-thickness airfoil a significant simplification is possible, and a more specific 
formula for Ll can be derived in terms of the steady velocity u only (I, 4.10): 

L; = pceU2 exp (-ik,t) -1 ( D + - U )  +ik, s' (1 -xl) R,(z,) dz, [ z, -1 

-C(kl) s' R&,) 4. (3.5) 
-1 

aT is the steady circulation around the airfoil, and i t  equals the jump of the potential 
function, A@ = @+ -@-, a t  the trailing edge, the overbar denotes the complex 
conjugate, 

A<(l)(x,) exp (+$it%%,) dx, 

AQl)(x,) exp (T$ikx,) dx, 
(3.6) 

+D, r1 (vp)(z,) ) exp (T$kx,) dz, . (3.8) 
Trn 1 

(3.9) 

is the complex conjugate of the Theodorsen function. Also v(ll) and vil) are the 2, and 
x2 components of dl), and <(1) = v(ll)-ivt)  is the complex conjugate velocity 
corresponding to dl). For any function f(xl, 5,) 

Mx1)  =f(% +O)-f(x,, -0) (3.10) 

(f(x1)) = 3&1> +O)+f(x,, -0)). (3.11) 

Finally if W(l ) ( z )  = @(l) + i !#l) denotes the complex potential of C(l) ,  with z = x1 + iz,, 
then the constant a, of (3.7) is given by 

and 

a, = (W( ' ) (x , ) )  - w,,, (3.12) 

here x,, is the point where the surface of the airfoil crosses the x, axis, and 

W, = lim @(l)(zl, x2) + ie, as x1 +- 00 with x, finite, (3.13) 

where e,  = E,,/a. 



114 H.  X .  Atassi 

4. The linear character of the lift formula 
It is important to determine how the unsteady-lift function Li depends on the 

geometry of the airfoil and the steady-flow angle of attack. 
If we only examine the expression for L;, we may conclude as in 1 that  there is 

a nonlinear dependence of L; on the steady-state aerodynamics, i,e. i t  is not possible 
to superpose the effects of thickness, camber and angle of attack. This is most 
apparent in the expression for D, given in (3.6). I n  1 this was attributed to the 
nonlinear dependence of u on u a t  large distance from the airfoil. 

However, re-examination of the theory leads to different conclusions. First, recall 
that, for a thin airfoil with small camber and angle of attack, the steady potential 
flow u ( I )  may be obtained as the superposition of three velocity fields: uF) accounting 
for the angle of attack, ug)  for the airfoil camber and u f )  for its thickness. Therefore, 
if ap is the angle of attack, and if um and a0 characterize the airfoil camber and 
thickness respectively, then we can write 

u(l) = p u p  +mug + o u p  . (4.1) 

Substit,uting (4.1) into the right-hand side of (2.10) shows that the inhomogeneous 
term in (2.10) can be linearized with respect to the parameters /3, m and 0. We further 
note that the boundary conditions on the airfoil and across the wake, derived in 
Appendix C of I, are also linear with respect to P,m and 8. This, however, is not 
suficient to insure the linearization of @('I with respect to these parameters, because 
upstream 1CI.(l) must match with the outer solution, given by (I, 3.23), which depends 
nonlinearly on u.  But noting that far upstream the leading term in W(' ) (Z)  is 
(r/2.n) In 1x1, we therefore conclude that there exists an intermediate region defined 
by 

where the outer solution can be expanded with respect to a and be given to within 
an error 0(a2 In2 1x1) by 

r ~2 

2x kz 

1 
UyUt = --exp{i(k.x-klt)} -Re--k,Re[k(W(l)(z)- K)]}}, (4.3) 

uiUt = -exp{i(k.x-k,t)) -IIm-+k,Re[k(W(l)(z)- W')]}}. (4.4) 

I4 
r ~2 

2x kz 
1 

14 
Thus the inner expansion of the outer solution is linear with respect to p, m and 8, 
and as a result the inner solution can be linearized a s t  

u(1) = puy+mug,+Bup. (4.5) 

Finally, we note that the unsteady pressure and lift are directly calculated from 
the inner solution. Thus, in spite of the nonlinear dependence of the unsteady flow 
on the steady aerodynamics, we arrive at the following remarkable result : 

for a thin airfoil with small camber and angle of attack moving in a periodic gust 
pattern, the unsteady lift L; can be constructed by linear superposition of three 

t Even though the outer solution must exhibit linear dependence on the local mean velocity in 
the intermediate region, it could still depend nonlinearly on b, m and 6' owing t o  non-local effects. 
This linear behaviour would not occur, for example, if the outer solution contained a constant with 
nonlinear dependence on /3, m and 8. 



The Xears problem for  a lifting airfoil revisited 115 

independent components: Lip resulting from a non-zero angle of attack of the mean 
potential flow, L;, resulting from the airfoil camber and Li0 produced by its 
thickness. 

Therefore the unsteady lift L; can be written as 

L;(k1, k 2 , p ,  m, 8)  = pLip(k1, k2)+mL;m(kl> k2)+eL;0(k1, k2). (4.6) 

The linear dependence of L; on /3, m and 8 brings about a considerable simplification 
of the derivation of its explicit mathematical expression as well as of its practical 
application. 

5. Specific formulas for airfoils with zero thickness 
To illustrate the above results and to assess the importance of mean-flow angle of 

attack and airfoil camber on the gust response, we consider, for simplicity, an airfoil 
reduced to its camberline. I n  this case 8 = 0, and ap and am denote the airfoil angle 
of attack and camber respectively. The expressions for Llp and L;, can then be 
obtained from (3.5) by inserting the proper expressions for up) and ug) respectively 
into (3.6) and (3.8). For simplicity, we further assume the airfoil to have a parabolic 
camberline. Then, the equation for the airfoil surface is given by 

x, = a ( 2 m ( 5 ~ - x ~ ) + p ( x 0 - x l ) }  ( -1 < 5,  ,< l ) ,  (5.1) 

where xo is the point where the surface of the airfoil crosses the x1 axis. For a flow 
satisfying the Kutta condition a t  the trailing edge, the expression for the complex- 
conjugate steady-flow perturbation velocity C(l)  is given by Jones & Cohen (1957, 
p. 15) as 

The branch cut for the square root is taken along the segment ( - 1,  + 1) .  Note that 
as z + c o ,  Q1) = O(2-I). 

I n  what follows we shall use the complex potential W of the potential velocity ~ ( x ) .  
Following expansion (2.7), we can write 

where 

and, using (5 .2) :  

w(1) = @(I) + 
= pi{z- (22- l)t+In~z-(z2- 1):1}+2mi(~z~-(z2-i)~]+In[z-(z2-i):1}. 

(5.5) 

The branch cut for the logarithm is taken along the positive x1 axis. Note that W 
is discontinuous along the x1 axis for x1 > - 1 ,  and that for - 1 < x1 < 1, 

( W ) ( x , ) )  = --(P+2m)+i(psl+2mz~). 15.6) 

In  order to obtain an explicit expression for L’, we substitute (5.2) into (3.6) and 
(3.8) and then derive the analytical expression of Li by carrying out the integration 
in (3.5). However, this will lead to a complicated expression where the linear 
dependence of Li on p and m is not explicit. For this reason, we use the linear 
decomposition of L; in terms of Lib and Lim as given in (4.6). However, because the 
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arbitrary parameters a, and e defined by (3.12) and (3.13) respectively enter the lift 
formula through (3.7), we also assume 

a, = Paop + ma,,,, e, = peep + me,,. (5.7), (5.8) 

5.1. Flat-plate airfoil at non-zero angle of attack 

By taking m = 0 in ( 5 . 2 ) ,  and evaluating (3.5)-(3.8), we obtain 

Lip = L { k , [  -(i Re (kaop) ++) 41% k 8 ( k , )  - 
npcU2e exp ( - ik, t )  Ikl lkl 

where 
A + ( z )  - 3 finz2 Im{H+(z) - J + ( z ) } ,  - (5.10) 

(5.11) 

(5.12) 

(5.13) 

J,, J ,  and HC),  HI‘) are Bessel and Hankel functions of the complex variable z ,  and 
aOp = i(xO-eop). Equation (5.9) was derived in I. 

5.2.  Airfoil with camber at zero angle of attack 
By taking /3 = 0 in (5.2), substituting {(l) into (3.6) and (3.8), and carrying out the 
integration, we obtain 

8k,(kI- k2 
ik14 

Lim 
npc U2c exp ( - ik, t )  = 4 { - ik, [Rc ($%aom) + 

lkl 

4k k +2 [nk, G($) -E(k , ) ]  + C(k,)  [F+($k) -IT@)]],  (5.14) 
lW 

(5.15) 

G ( z )  = I m { m J l ( z ) } ,  (5.16) 
~ 

z ~ z J + ( z )  G(z) -J , ( z )  
F+(z) = z  - 

2 J,@) 
- 

From (3.12), (3.13) and (5.6), a,, = i(24-eOm). 

(5.17) 

6. Discussion of the results 
For an airfoil whose camber is am, placed a t  an angle of attack aP to a mean flow 

U ,  and subject to  a gust disturbance represented by (2.6) far upstream, the total 
unsteady lift is 

(6.1) L’ = Lh + a(PLia+ mLim), 

where Lh, Lip and L;, are given by (3.2), (5.9) and (5.14) respectively. 
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The lift function derived here accounts for the effects of distortion of the gust by 
the steady-state aerodynamics. Nevertheless, it  maintains the linear dependence on 
incidence and camber as in steady thin-airfoil theory. The expressions for Lip and 
L;, clearly indicate a complex coupling mechanism between the two wavenumbers 
k ,  and k ,  of the gust. The present results are therefore entirely different from those 
of Horlock (1968) and Naumann & Yeh (1972), whose lift formulas are independent 
of the transverse wavenumber k,. 

Let us now examine the low-frequency limit, where k, and k ,  both go to zero. 
Expanding (5.9) and (5.14) for small k, and k ,  yields 

The low-frequency limit for the total unsteady lift function is then 

(6.4) 
L’ = n p c ~ 2 t :  exp ( - ik, t )  2 - 2 a ( ~  + 2rn) -} k2 

t i  14 . 

This limit is exactly the quasi-steady approximation for the fluctuating lift. 
If we now consider the limits of the fluctuating lift L’ as k,+O, while k ,  remains 

finite, we see that both Lip and Li, vanish. That is, if the imposed gust had only 
an upwash component, then the nonsteady lift is completely determined to order ea 
by the Sears function. 

On the other hand if k l - 2 0 ,  but k, remains finite, then 

Lip - npcU2sexp ( -  ik, t )  { - k,[K,(&) I,,($k,) - K,(ik,) Il(+k,)l}, 
I , ; ,  - npcU2e exp ( - ik, t )  { - EN,(?& I1(ik2)}, 

(6.5) 

(6.6) 

where I ,  and K ,  are the modified Bessel functions of order n. Since Lh is proportional 
to k,/lkl, Li+O. If we put k, = 0 in (6.5) and (6.6), we obtain the corrections which 
should be added to the airfoil steady lift to account for the effects of a sinusoidal 
disturbance of magnitude -eU parallel to  the mean flow, and whose wavelength is 

Consider the first terms of the right-hand side of (5.9) and (5.14). They contain the 
arbitrary constants uop and a,,. Combining these two terms together for a cambered 
airfoil a t  an angle of attack to the mean flow, yields the term 

2lT/k,. 

k -  - i Re (ka,)  2 S( kl). (6.7) lkl 
This term is a correction to the Sears solution Li (order E )  for the constant phase 
factor E, introduced in the upstream condition for the gust. It is convenient to 
reference the gust with respect to the centre of the airfoil defined by its coordinates 

XIC = 0, x2c = a{pxo+2mx;} 

This defines E, as z,~, and 
e, = px, + 2mxi. 

Therefore, in view of (3.12), (3.13) and (5.5)-(5.8), aoP = a,, = 0. Thus if the phase 
of the gust upstream is referenced with respect to the airfoil centre, that is, if the 
leading terms of the exponent in (2.6) are 

klx,+k,(x,-x,,)+ak, (6.10) 
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the first terms of the right-hand side of (5.9) and (5.14) vanish. In  what follows we 
assume the gust phase to be referenced with respect to the airfoil centre and we neglect 
these two terms. 

We now consider the high-frequency limit wherein lkl+ co. Expanding the various 
terms of (5.9) and (5.14), we find that the leading terms are 

2ik, k, -- - exp ( - ik,) 
Lip 

npcU2eexp ( -ikl t )  lk(2 

and 

LI, 
npcU2eexp(-ik,t) 

=o(W) k{ k,  as k+co 

(6.1 1) 

(6.12) 

Thus if k ,  --f co, while k, remains finite, Lip decays as k;l and L;, as k;j. On the other 
hand, if k ,  + co and k ,  remains finite, then Lip decays as k;' and L;, as k;,. In  both 
cases the decay rate is faster than that for I,;, which decays as k;i as k, --f co. However, 
if both k,  and k ,  become very large while the ratio k,/k,  is finite, then Lip rapidly 
oscillates about a finite magnitude 2k ,  k,/lk12, while Lk decays as IkI-?. 

It is convenient for presenting the results to introduce the dimensionless response 
functions 

(6.13) 

and 

R, = 'Jim 
npc U2e exp ( - ik, t )  

(6.14) 
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FIGURE 3. Vector diagram showing the real and imaginary'parts of the response 
function Rp versus the reduced frequency k,. 

Figures 2-5 are vector diagrams showing the real and imaginary parts of Ra and 
R, for different values of k ,  as functions of the reduced frequency k,.  The multiple 
intercrossing of these diagrams is an indication of the complex dependence of the 
response functions on k,  and k,. At low reduced frequency, the amplitudes of these 
functions exhibit strong variations with k, .  On the other hand, a t  large reduced 
frequency, they follow a spiral course around the origin, decaying faster at smaller 
k ,  as predicted by (6.11) and (6.12). 

We have seen that the distortion of the oncoming gust by the mean potential flow 
of the airfoil is the main feature in the present problem and that i t  has a considerable 
effect on the unsteady lift. At large distance from the airfoil, the complex conjugate 
of the potential velocity is given by 

aT 
2zz 

v,-iv, = l + i - + + ( ~ - ~ ) .  (6.15) 

Hence the long-range interaction between the unsteady flow and the mean potential 
flow depends only on the steady circulation aT of the airfoil. It is of great practical 
interest to examine how the unsteady lift varies for different airfoils having the same 
steady lift. For this we considered three airfoils having the same steady-lift coefficient 
aT = 2Ra(P+2m) = 0.6z, but their camber am and angle of attack to the mean flow 
a@ vary. Vector diagrams of the response functions per unit circulation 

R, = 2z(/3Rp+mH,)/T (6.16) 

are shown in figure 6 for a gust propagating a t  4 5 O ,  i.e. k,  = k,, for these three airfoils. 
The reduced frequency k ,  is varied from 0.1 to 10. It is clear that the effect of the 
steady-state aerodynamics cannot be reduced to the simple parameter T character- 
izing its lift. We also note that, a t  large reduced frequency for the same steady lift, 
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FIGURE 4. Vector diagram showing the real and imaginary parts of R ,  
versus the reduced frequency k,. 
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FIGTJRE 5 .  Vector diagram showing the real and imaginary parts of R ,  
versus the reduced frequency k,. 

the response function R, is larger for larger angle of attack of the mean flow. This 
result is essentially in accord with (6.11) and (6.12). 

Finally, the total response function is defined by 
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FIGURE 6. Response function per unit circulation R ,  for three airfoils having the same steady lift. 
The gust is propagating a t  45' to the mean flow (k, = k2). The angle of attack ap is in radians. 
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FIGURE 7. Total response function R for three airfoils having the same steady lift. The 
gust is propagating a t  45' to the mean flow. 
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It is customary to  take + ik, t for the time phase of the gust. The response function, 
in this case, will be z. For comparison with Sears’ results, we have then plotted in 
figure 7 three vector diagrams for the total response function Rfor  the three airfoils 
and gust conditions as in figure 6. It is remarkable to note that a t  reduced frequencies 
k, below unity, the magnitude of the response function is significantly reduced from 
about one to 0.25. Also to be noted are the significant differences between the response 
functions for three airfoils with the same steady lift coefficient. 
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